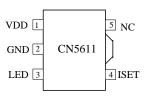


低压差大功率发光二极管(LED)驱动集成电路

CN5611

概述:

CN5611是一款工作于2.7V到6V的电流调制电路,恒定输出电流可达800mA,可以用来驱动包括白光发光二极管在内的各类发光二极管。CN5611的 LED端电流通过一个外部的电阻设置,可设置的电流范围为30mA到800mA。芯片内部集成有功率晶体管,大大减少了外部元器件的数目。其它功能包括芯片过温保护,LED短路/开路保护等。CN5611采用散热能力较强的5管脚SOT89封装。


应用:

- 大功率发光二极管(LED)驱动
- 发光二极管(LED)头灯
- 手电筒,应急灯及照明灯具
- 手机,数码相机及 MP3 播放器
- LCD 屏和键盘等背光

特点:

- 工作电压范围: 2.7V 到 6V
- 芯片内部集成有功率晶体管
- 低压差
- 用外部电阻设置的输出电流可达 800mA
- 輸出电流精度: ±8%
- 芯片过温保护
- LED 短路/开路保护
- 工作的环境温度范围: -40℃到85℃
- 采用 5 管脚的 SOT89 封装
- 无铅

管脚排列图:

典型应用电路:

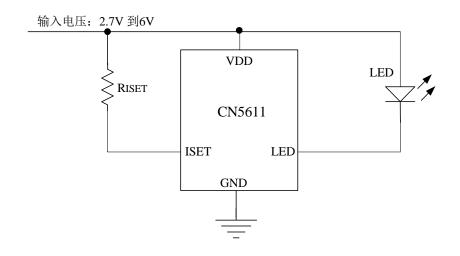


图 1 典型应用电路

1

功能框图:

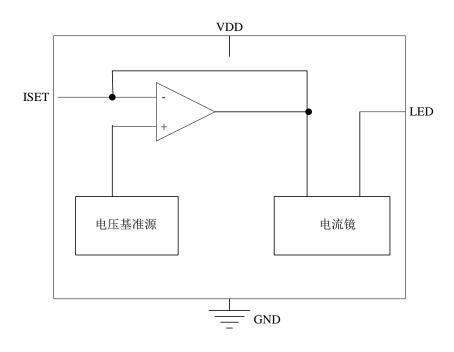


图 2 功能框图

管脚描述:

序号.	名称	功能描述
1	VDD	电源正端。 也是内部电路的工作电源。
2	GND	电源地
3	LED	发光二极管(LED)负极连接端
4	ISET	恒定LED电流设置端。恒定的LED电流设置是通过在ISET管脚和VDD管脚 之间连接一个电阻R _{ISET} 实现的,计算电流的公式如下:
5	NC	没有连接。

极限参数

管脚电压0.3V to 6.5V	最大结温150℃
工作温度范围40℃ to 85℃	存储温度65℃ to 150℃
管芯到管壳热阻32℃/W	焊接温度260℃

超出以上所列的极限参数可能造成器件的永久损坏。以上给出的仅仅是极限范围,在这样的极限条件下工作,器件的技术指标将得不到保证,长期在这种条件下还会影响器件的可靠性。

2

电气参数:

(VIN=3.7V, T_A=25℃, 除非另有说明)

参数	符号	测试条件	最小	典型	最大	单位	
输入电压	VDD		2.7		6	V	
工作电流	I_{VDD}	$R_{ISET}=10k \Omega$		335		uA	
LED管脚流入电流	I_{LED}	$R_{ISET}=3k \Omega$	279	303	327	mA	
LED管脚电流精度			-8		+8	%	
过温保护温度	T_{OTP}			125		$^{\circ}$	
过温保护迟滞	T_{H}			11		$^{\circ}\!\mathbb{C}$	
LED管脚漏电流	I_{LKG}	VDD=GND, V _{LED} =5.5V			1	uА	
	差 V _{DROP}	$I_{LED}=100$ mA \times 90%		95			
		$I_{LED}=200\text{mA}\times90\%$		135			
LED管脚电压差		I_{LED} =300mA×90%		175		mV	
		I_{LED} =500mA×90%		280			
		I_{LED} =700mA×90%		410			
管芯到管壳热阻	θ _{JC}			32		°C/W	
管芯到环境空气热阻	θ_{JA}	没有散热措施,没有空气流动		135		°C/W	

详细描述:

CN5611是能够对大功率发光二极管 (LED)提供高达800mA的电流调制电路,此外,CN5611还具有过温保护,LED开路/短路保护功能。

当由于过载或者发光二极管短路而导致CN5611的结温超过125℃时,CN5611进入过温保护状态,在这种情况下,流入LED管脚的电流为所设置的恒流电流的1%,这样器件不会被烧毁。当CN5611的结温降低到114℃时,CN5611从热保护模式释放出来,重新正常工作。这样在过载或者LED短路时,CN5611将在热保护模式和正常工作模式之间不断切换,以达到保护器件的目的。

应用信息:

设置发光二极管(LED)的电流

CN5611用一个连接在ISET管脚和VDD管脚之间的电阻R_{ISET}来设置LED管脚的电流,该电流的计算公式如下:

 $I_{LED} = 910V / R_{ISET}$

其中, I_{LED}是流进LED管脚的电流,单位是安培(A)

 R_{ISET} 是ISET管脚和VDD管脚之间的电阻值,单位是欧姆(Ω)

例如,如果要使流进LED管脚的电流为200mA,则:

 $R_{ISET} = 910V/0.2A = 4.55k\,\Omega$

为了保证良好的稳定性和温度特性, R_{ISET}建议使用精度为1%的金属膜电阻, 功率为1/10瓦即可。

芯片消耗功率的考虑

CN5611 所允许的最大功耗由下式所示:

 $P_{Dmax} = (T_J - T_A)/\theta_{JA}$

其中, P_{Dmax} 是 CN5611 所允许的最大功耗

 T_I 是 CN5611 的最大结温,由于过温保护电路的作用, T_I =125℃

T_A是 CN5611 工作的环境温度

 θ_{JA} 是 CN5611 所采用的封装的热阻,在没有散热措施没有空气流动时其值为 135 °C/W;

REV 1.2

3

在有散热措施的情况下, θ_{JA} 会大幅度减小,所以为了得到最大的 LED 电流,在设计 PCB 时要充分考虑散热问题。

CN5611 的真实功耗由下式所示:

 $P_{Dact} = V_{LED} \times I_{LED}$

其中, P_{Dact}是 CN5611 的真实功耗

V_{LED} 是正常工作时 LED 管脚对地的最高电压

I_{LED}是设计的流入 LED 管脚的电流

为了使 CN5611 正常工作, PDact 必须小于 PDmax.

驱动多个发光二极管(LED)

当需要驱动多个发光二极管时,可以考虑图 3 和图 4 所示的电路。VIN 是用来驱动多个发光二极管的高电压源,CN5611 的工作电压可以是另一个独立的电压源,如图 3 所示;也可以从高电压源产生,如图 4 所示。

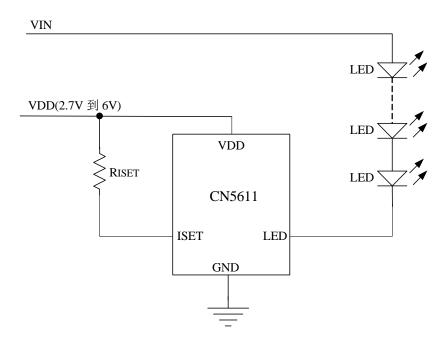


图3 用两个电压源驱动多个发光二极管(LED)

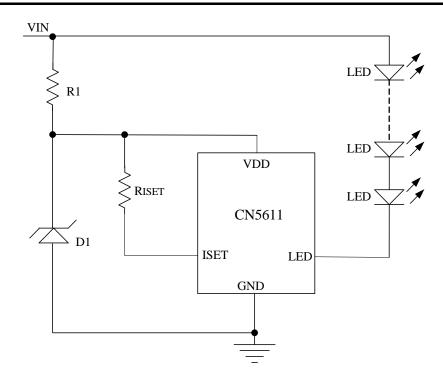


图4 用一个高电压源驱动多个发光二极管(LED)

在图3和图4所示的电路中,必须保证在最坏情况下LED管脚的电压低于6V。

在图4所示的电路中,稳压二极管D1的击穿电压应该在2.7V到6V之间,R1的电阻值要足够小,使得在最坏情况下流过R1的电流大于3毫安。

更多应用电路及注意事项见"CN5611-CN5612应用电路"。

亮度控制

有三种方法调整发光二极管的亮度:

1. 用PWM信号调整发光二极管的亮度(如图5所示)

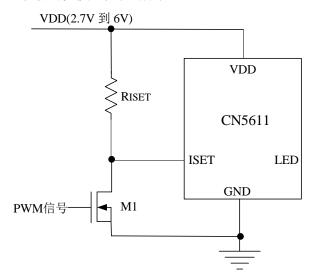


图5 用PWM信号调整亮度

当PWM信号加到N沟道场效应晶体管M1的栅极上时,流进LED管脚的电流在零和所设计的电流值之间变化,这样流进LED管脚的平均电流就受PWM信号的控制。LED的平均电流随PWM信号占空比的增加而减小,100%的占空比将完全关断LED管脚的电流;0%的占空比使得LED管脚的电流为最大值即所设计的值。PWM信号的频率应该小于10KHz。

5

2. 用逻辑信号调整发光二极管的亮度(如图6所示)

如果只需要分几个档次来调整发光二极管的电流,可以用逻辑信号来实现,图6示出了分两个档次来调整发光二极管的电流的电路。 R_{ISET1} 设置了流经LED管脚的最小电流(当P沟道场效应晶体管关断时,即逻辑信号为高电平的情况)。 R_{ISET2} 设置了流经LED管脚的的电流的增加量(逻辑信号为低电平)。

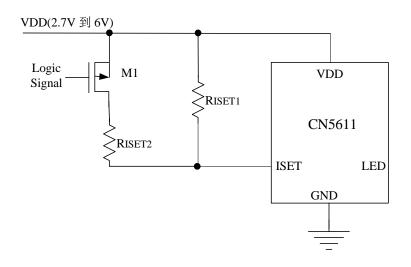


图6 用逻辑信号调整亮度

3. 用可变电阻调整发光二极管的亮度(如图7所示)

用一个可变电阻可以连续调整发光二极管的亮度,如图7所示。 R_{ISET1} 设置了流经LED管脚的最大电流, R_{ISET2} 为可变电阻,改变 R_{ISET2} 的电阻值就可以连续改变发光二极管的亮度。

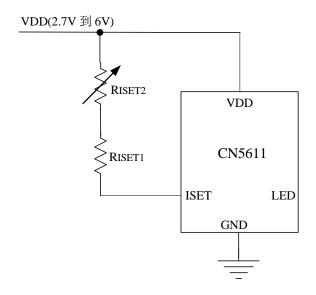
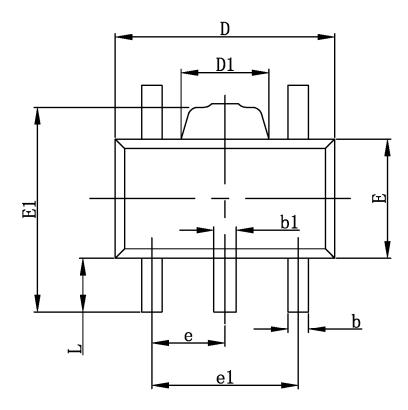
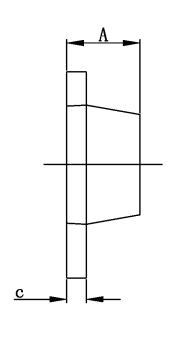


图 7 用可变电阻调整发光二极管的亮度

PCB设计注意事项


一个散热性能良好的 PCB 对 LED 电流很关键。集成电路产生的热通过封装的金属引线框管脚散到外面,PCB 上的铜层起着散热片的作用,所以每个管脚(尤其是 LED 管脚和 GND 管脚)的铜层的面积应尽可能大,多放些通孔也能提高热处理能力。在系统内除了 CN5611 以外的热源也会影响 LED 管脚的电流,在做系统布局时也要给以充分考虑。



为了能够得到最大的 LED 电流,要求将 CN5611 背面裸露的金属板焊接到印刷线路板的地端的铜线上,以达到最大的散热性能。否则,芯片的热阻将增大,导致 LED 电流减小。

封装信息

Symbol	Dimensions	In Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
Α	1.400	1.600	0.055	0.063	
b	0.320	0.520	0.013	0.020	
b1	0.360	0.560	0.014	0.022	
С	0.350	0.440	0.014	0.017	
D	4.400	4.600	0.173	0.181	
D1	1.400	1.800	0.055	0.071	
Е	2.300	2.600	0.091	0.102	
E1	3.940	4.250	0.155	0.167	
е	1.500	OTYP	0.060TYP		
e1	2.900	3.100	0.114	0.122	
L	0.900	1.100	0.035	0.043	