LM321

■ 产品简介

LM321是一款单路输出的低功耗差分式运算放大器,可以单电源或双电源供电。具有较高的开环增益、内部补偿、高共模范围和良好的温度稳定性,以及具有输出短路保护的特点。可应用于传感器的放大电路、直流放大模块,音频放大电路和传统的运算放大电路中。

■ 产品特点

● 单电源电压范围: 3V~36V

● 双电源电压范围: ±18V

● 单位增益带宽:可达 1.2MHZ

● 输出短路保护

● 低功耗: 0.5mA @ V+=5V

● 封装形式: SOT23-5

■ 产品用途

● 传感器信号放大器

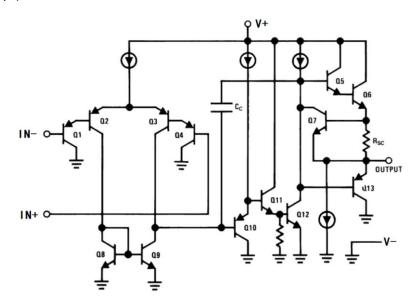
● 直流増益

● 音频放大器

● 其它应用领域

■ 封装形式和管脚功能定义

S0T23-5 管脚序号	管脚定义	功能说明
1	IN+	正相输入
2	V-	电源负
3	IN-	反相输入
4	OUTPUT	输出
5	V+	电源正

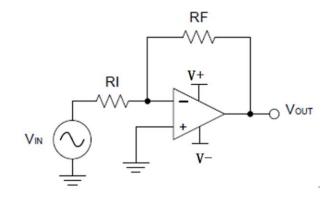

■ 极限参数

项目	符号	极限值 ^⑴	单位
单电源供电电压	V+	40	V
双电源供电电压	Vs	±20	V
差分输入电压 (2)	V_{IDR}	±40	V
共模输入电压	$V_{\rm ICR}$	-0.3∼40V	V
输出短路时间	t_{sc}	连续	
耗散功率	P_D	300	mW
工作温度	TA	0-70	$^{\circ}$ C
储存温度	Ts	-65-150	$^{\circ}$
焊接温度	Tw	260, 10s	${\mathbb C}$

注:(1)极限值是指无论在任何条件下都不能超过的极限值。如果达到此极限值,将有可能造成产品劣化等物理性损伤;同时在接近极限参数下,不能保证芯片可以正常工作。

(2) 输入IN+与IN-之间的电压差。

■ 等效原理图



■ 直流电学特性 (T_A=25℃, V+ =5V, V- =GND 除非特别指定)

项目	符号	测试条件		最小值	典型值	最大值	单位
输入失调电压	VIO	V+ =5V to MAX, $V_{\rm IC}$ = $V_{\mbox{ICR}}$ (min), VO=1.4V		_	5	_	mV
输入失调电流	IIO	VO = 1.4 V		_	10	50	nA
偏置电流	IBIAS	VO = 1.4 V		_	50	250	nA
共模输入电压	V _{ICR}	V+=5V to 36V		V-	ı	V+ −1.5V	V
开环电压增益	A _{OL}	V+=15V, VO=1V to 1	1V, RL≥2k Ω		100	-	V/mV
共模抑制比	CMRR	V+=5V to MAX, V _{IC} =V _{ICR} (min)		_	80	-	dB
单位增益带宽	GBWP			_	1.2	-	MHZ
电源电压抑制比 Pssr	$\Delta V_{VDD}/\Delta V_{IO}$	V+=5V to MAX, f=20kHz		_	90	-	dB
输出高电平电压	VOH	V+ =15V, V _{ID} =1V	Iout =-50uA	_	13.6	-	V
			Iout =-1mA	_	13.5	-	V
			Iout =-5mA	_	13.4	-	V
		V+ =28V	RL=2k		26	-	V
	VOL	V+ =15V, V _{ID} =-1V	Iout =50uA	-	0.1	-	V
输 出低电平电压			Iout =1mA	_	0.7	-	V
湘山似电 于电压			Iout =5mA	_	1.0	-	V
		V+ =28V	RL=2k	_	0.85	-	V
电源工作电流	т	V+ =5V, V0=1/2V+, No load		_	0.5	-	mA
电	电源工作电流 I _{CC} V+ =36, V0=1/2V+, No load		No load	_	0.8	_	mA
单电源工作电压	V+	V- =0V (GND)		3	-	36	V
双电源工作电压	VS	V+, V-		-18	ı	+18	V

■ 典型应用

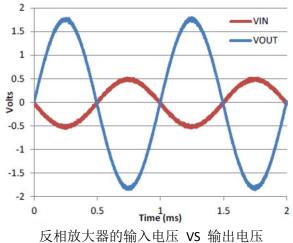
1、线路图

2、设计要求

必须选择大于输入电压范围和输出范围的电源电压。

例如,将信号源 VIN 从±0.5 V 放大到±1.8V。将电源设置为±5 V 足以适应此应用要求。

3、设计过程

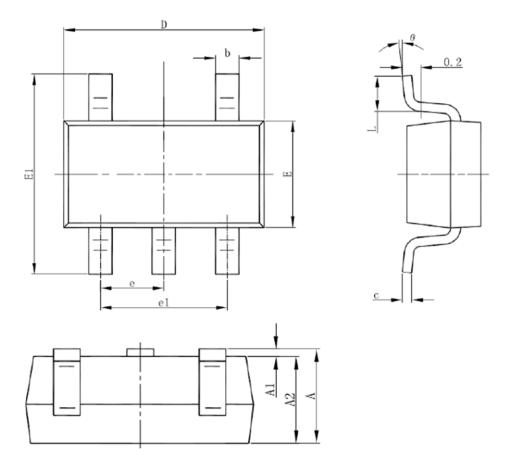

$$A_V = -VO/VIN = -1.8/0.5 = -3.6$$

一旦确定了所需的增益 Ay, 就要为 RI 或 RF 电阻选择一个值。根据运放的电特性及功耗的需要, 可选择 $1k\Omega-100k\Omega$ 范围内的值。本例将选择 $RI=10~k\Omega$,则 $RF=36k\Omega$ 。这由方程式 2 确定。

$$A_{V} = -RF/RI$$
 ----(2)

$$RF = -A_V * RI = 3.6*10 = 36 k \Omega$$

4、应用曲线图



Ver 1.0

■ 封装信息 (封裝信息仅做参考, 具体以订货为准)

单位:英寸/毫米

S0T23-5

Symbol	Dimensions In	Millimeters	Dimensions	In Inches	
	Min	Max	Min	Max	
Α	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
E	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
е	0.950(BSC)		0.037(BSC)		
e1	1.800	2.000	0.071	0.079	
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	